Straßenbauverwaltung Freistaat Bayern

Straße / Abschnittsnummer / Station: A9 / 380 / 9,103 – 13,723

BAB A9, Berlin – Nürnberg Neubau PWC- Anlage 319-1L und 319-1R

Betr.km 315+800 bis Betr.km 320+420

PROJIS-Nr.:

Unterlage / Blatt- Nr. 18 /

FESTSTELLUNGSENTWURF

BAB A9, Berlin - Nürnberg

Abschnitt:

AS Bayreuth Süd - AS Trockau

Neubau PWC- Anlage 319-1L und 319-1R

- Wassertechnische Untersuchungen -

aufgestellt:	
Autobahndirektion Nordbayern	
Dienststelle Bayreuth	
Pfeifer, Baudirektor	
Bayreuth, den 28.10.2016	

INHALTSVERZEICHNIS

	Abkürzungen	3
1	BESTEHENDE VORFLUTVERHÄLTNISSE	5
2	GEPLANTE ENTWÄSSERUNGSMAßNAHMEN	5
3	GRUNDLAGEN	7
4	ERGEBNISSE	7
4.1	RRHB 83	8
4.1.1	Ermittlung der Wassermengen und A _{red}	8 8 9
4.1.2	Qualitative Gewässerbelastung nach M153	
4.1.3	Bemessung ASB und RRHB	10
4.2	RRHB 84	13
4.2.1	Ermittlung der Wassermengen und A _{red}	13
4.2.2	Qualitative Gewässerbelastung nach M153	14
4.2.3	Bemessung ASB und RRHB	15

Abkürzungen

A _E [ha]	Fläche des Einzugsgebietes
ASB	Absetzbecken (gleichwertiges Synonym: (Regen-) Klärbecken)
	Das Absetz- oder Regenklärbecken erfüllt die Funktion der 1.
	mechanischen Reinigungsstufe: Absetzen von im Regenwasser
	befindlichen, absetzbaren Stoffen und Partikeln. (Die Verwen-
	dung der beiden Begriffe "Absetzbecken" und "Regenklärbe-
	cken" ist planungshistorisch begründet. "Absetzbecken" ist der
	gängige Begriff der Straßenbauverwaltung, "Regenklärbecken"
	entstammt mehr dem Sprachgebrauch der kommunalen Ent-
	wässerung.)
AU [ha]	Anwendungsbezogener Rechenwert zur Quantifizierung des
	Anteils einer Einzugsgebietsfläche, von der Niederschlags-
	abfluß nach Abzug aller Verluste vollständig in das Ent-
	wässerungssystem gelangt
BayWG	Bayerisches Wassergesetz
D	Durchgangswert; Kenngröße zur vergleichenden Wertung ein-
	zelner Behandlungsmaßnahmen
DN	Nennweite ("diameter nominal"), Innendurchmesser eines Roh-
res	
DWA	Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Ab-
	fall e.V.
DWA-M 153	Merkblatt "Handlungsempfehlungen zum Umgang mit Regenwasser"
Е	Emissionswert; Emissionswert der abflußwirksamen Flächen
F	Herkunftsflächentyp; Typisierung abflußwirksamer Flächen
	nach ihrer stofflichen Belastung
G	Gewässertyp; Typisierung von Gewässern nach ihrem Schutz-
	bedürfnis
GW	Grundwasser
h [m]	Wassertiefe
HW	Hochwasser
MQ [m^3/s]	Mittelwasserabfluß; arithmetischer Mittelwert der Abflüsse in ei-
	ner Zeitspanne

M 153 siehe DWA-M 153

NBr. Nennbreite NW Nennweite

QDr [l/s] Drosselabfluß; Begrenzung des Abflusses aus einem

Rückhalteraum auf einen vorgegebenen Höchstwert

qA [$m^3/(m^2 x h)$] Oberflächenbeschickung; Volumen, das pro Zeiteinheit und bezogen auf die Oberfläche die Anlage pas-

siert

r (D,n) [1/(s x ha)] Regenspende; Regenspende für die Dauer D

und die Häufigkeit n

RiStWag Richtlinien für bautechnische Maßnahmen an Straßen in Was-

sergewinnungsgebieten

RRHB Regenrückhaltebecken

RV Regelungsverzeichnis, Unterlage 11

VRRB [m³] Gesamtvolumen des Regenrückhaltebeckens

WHG Wasserhaushaltgesetz
WSG Wasserschutzgebiet

Anwendungs- bereich	Berechnungs- grundlage	Bezeichnung
Wahl des Verfahrens zur Regenwasser- behandlung	Merkblatt DWA-M 153	Handlungsempfehlungen zum Umgang mit Regen- wasser
Bemessung der Becken	Arbeitsblatt DWA-A	Bemessung von Regen- rückhalteräumen

1 BESTEHENDE VORFLUTVERHÄLTNISSE

Die Vorflut der bestehenden BAB A9 ist im Planungsbereich zweigeteilt. In beiden Entwässerungsbereichen wird das anfallende Oberflächenwasser über ein Absetzbecken (ASB) gereinigt und über ein Regenrückhaltebecken (RRHB) gedrosselt.

Das auf der bestehenden BAB A9 anfallende Oberflächenwasser zwischen Betr.-km 318+416 und Betr.-km 319+530 wird über Rinnen, Mulden, Gräben und Entwässerungsleitungen gesammelt und über das ASB und RRHB 83 gereinigt und gedrosselt in die Ablaufleitung DN 300 aus der Abwasserbehandlungsanlage RV- Nr. 23.2 eingeleitet. Diese gemeinsame Freispiegelleitung DN 300 wird im Straßengrundstück der KR BT 43 (Bankette, Grünstreifen östlich der KR) sowie in dem Wirtschaftsweg der Gemeinde Hummeltal (Flur-Nr. 646 + 647/3 Gemarkung Hinterkleebach) und der bayerischen Staatsforsten (Flur-Nr. 41/3 und 42/1) zur Püttlach geführt.

Das auf der bestehenden BAB A9 anfallende Oberflächenwasser zwischen Betr.-km 319+530 und Betr.-km 320+430 wird über Rinnen, Mulden, Gräben und Entwässerungsleitungen gesammelt und über das ASB und RRHB 84 gereinigt und gedrosselt an den Zulaufgraben zur Püttlach (RV- Nr. 16) weitergegeben.

2 GEPLANTE ENTWÄSSERUNGSMASSNAHMEN

Die bereits unter Ziffer 1 beschriebene Aufteilung der Einzugsgebiete der Oberflächenwasser bleibt unverändert. Die Einzugsflächen vergrößern sich entsprechend dem Neubau der PWC-Anlage 319-1L und 319-1R. Beide Entwässerungsbereiche entwässern über ASB und RRHB in den vorhandenen Vorfluter, die Püttlach.

Das auf den neu errichteten Verkehrs- und Stellflächen der PWC-Anlage anfallende Oberflächenwasser wird über Straßenabläufe und Schächte gesammelt und über Rohrleitungen den beiden ASB und RRHB zugeleitet.

Zur Einleitung des auf der Ostseite der PWC-Anlage anfallenden Oberflächenwassers in das RRHB 83 wird bei Betr.km 319+390 ein Durchlass DN 500 durch die BAB A9 erforderlich. Dieser wird innerhalb des Versorgungstunnels DN 2000, der unter Aufrechterhaltung des Verkehres durchpresst werden muss, angeordnet.

Durch den Bau der PWC-Anlage werden die vorhanden Entwässerungsleitungen entlang der BAB A9 mit zusätzlichem Wasser beaufschlagt. Dadurch sind diese in Teilbereichen unterdimensioniert. Hier ist ein Ersatz durch einen ausreichenden Durchmesser geplant.

Die geplanten Regenrückhaltebecken werden mit Dauerstau ausgeführt.

Das gesamte Entwässerungssystem wurde in Abstimmung mit dem Wasserwirtschaftsamt Hof konzipiert.

3 GRUNDLAGEN

- Richtlinien für die Anlage von Straßen, Teil: Entwässerung (RAS EW)
- Arbeitsblatt DWA-A 117 (Bemessung von Regenrückhalteräumen),
 DWA-A 138 (Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser)
- Merkblatt DWA-M 153 (Handlungsempfehlungen zum Umgang mit Regenwasser 2007)
- Regenreihen des Deutschen Wetterdienstes, KOSTRA DWD 2000

4 ERGEBNISSE

Zusammenfassung

Regenspende $r_{15;1}$ = 135 $I/(s \times ha)$ (aus PlaFe 6-streifiger Ausbau BAB A9)

Regendauer für ASB = 15 min

Regendauer für RRHB = je nach Berechnung

Regenhäufigkeit ASB n = 1,0Regenhäufigkeit für RRHB n = 0,2

		RRHB 83	RRHB 84
Undurchlässige Fläche A _{red}	ha	8,680	3,256
Regenrückhaltebecken	RRHB 83	RRHB 84	
maximaler Drosselabfluss	l/s	84,0	48,8
Erforderliches Rückhaltevolumen ca.	m³	2981	1059
Absetzbecken		ASB 83	ASB 84
Erforderliche Wasseroberfläche ca.	m²	469	176
Erforderlicher Ölauffangraum	m³	30	30
Max horizontale Fließgeschwindigkeit	m/s	0,05	0,05

4.1 RRHB 83

4.1.1 Ermittlung der Wassermengen und A_{red}

Vorfluter Püttlach

Grundlagen

nach RAS-Ew Ausgabe 2005 / ATV M 153

Abflußbeiwerte:

nach ATV M 153 Tabelle 2

Art der Fläche	Abflußbeiwert		
Fahrbahnen / Parkplätze	ψ=	0,9	
Pflaster mit dichten Fugen	ψ=	0,75	
standfeste Bankette in Schotterbefestigung	ψ=	0,9	
Wirtschaftswege in Schotterbefestigung	ψ=	0,6	
Dachflächen WC-Gebäude	ψ=	0,9	

Spezifische Versickerraten:

Böschungen (einschl. Seitenstreifen, Mulden)	$q_s =$	100 l/s*ha
Grünflächen mit Abfluss in das RRB	$q_s =$	100 l/s*ha

Regenspenden:

Regenhäufigkeit (aus PlaFe Ausbau BAB A9)	n =1	$r_{15(n=1)} =$	135 l/s*ha	
---	------	-----------------	------------	--

Ermittlung der Wassermengen nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2

lfd. Nr.	Art	Fläche	Abflußbei- wert	reduzierte Fläche	spezifische Versickerrate	Wasser- menge
		А	Ψ	Α	q_s	Q
		[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahnen und Parkplätze	3,446	0,9	3,101	0	418,7
2	Gehwege und Plasterflächen	0,786	0,75	0,590	0	79,6
3	Dachflächen	0,033	0,9	0,030	0	4,0
4	standfeste Bankette an Fahrbahnen	0,242	0,9	0,217	0	29,4
5	Muldenflächen	0,353	1	0,353	-100	12,4
6	Dammböschungen	1,073	1	1,073	-100	37,6
7	Einschnittsböschungen	0,293	1	0,293	-100	10,2
8	Grünflächen mit Abfluss	0,701	1	0,701	-100	24,5
9	Wirtschaftswege	0,385	0,6	0,231	0	31,2
10	Beckenanlage abgedichtet	0,521	0,9	0,469	0	63,3
11	aus Bestand BAB A9 (It. PlaFe)					461,0
			L.	Summe:		1171,8

Berechnung von A_{red}

nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.3

 $A_{red} = \frac{Q[l/s]}{r[l/(s^*ha)]} \frac{1171,81}{135,00}$

 $A_{red} = 8,680$ ha

4.1.2 Qualitative Gewässerbelastung nach M153

Qualitative Gewässerbelastung

Auf Grundlage des Bewertungsverfahrens nach dem Merkblatt DWA-M 153 wird die vorgesehene Behandlungsmaßnahme überprüft.

M153 - Programm des Bayerischen Landesamtes für Umwelt							¥ CI 3101	n 01/2010
Höhnen & Partner, Ingen	ieuraktiengesel	lschaft, Bamberg						
		Qualitative G	ewässerb	elastung				
Projekt: Neubau PWC	- Anlage 319-11	L und 319-1R					Datum	: 06.05.2014
Gewässer (Anhang A, Ta	abelle A.1a und	A.1b)				Тур	Gewäss	erpunkte G
RRHB 83, Vorfluter Püttl	ach					G 6	G =	15
Flächenanteile f _i (Kap. 4)			Luft L _i (1	Tab. A.2)	Flächen	F _i (Tab. A.3)	Abflu	ıssbelastung B _i
Flächen	A _{II} in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	В	$_{i} = f_{i} \cdot (L_{i} + F_{i})$
Fahrbahn, Parken	3,101	0,46	L 3	4	F 7	45		22,56
Bankette	0,218	0,032	L 3	4	F 7	45		1,59
Gehwege, Plasterfläche	0,59		L 3	4	F 3	12		
Grünflächen, Böschung	0,869		L 3	4	F 1	5		
Dachflächen, Becken	0,499		L 3	4	F 2	8		
aus Bestand BAB A9	3,415	0,507	L 3	4	F 6	35		19,78
	Σ = 8,692	$\Sigma =$ 1	1	Abfluss	belastung B	= Summe (B _i)	B =	43,93
maximal zulässiger Durch	ngangswert D _m	_{ax} = G/B					D _{max} =	0,34
vorgesehene Behandlun	gsmaßnahmen	(Tabellen: A.4a, A	.4b und A.	4c)		Тур	1	gangswerte D _i
Absetzbecken mit Dauer	stau und max S	lm/h Oberflächenbe	eschicku			D 21d		0,2
						D		
						D		
		Durchg	angswert [) = Produkt	aller D; (sie	he Kap 6.2.2) :	D=	0,2
Emissionswert E= B · D :						E=	8,8	
Die vorgesehene Regen	wasserbehandl	ung reicht aus, da l	E = 8,8 < 0	ā = 15			I.	
		N=2						

4.1.3 Bemessung ASB und RRHB

Bemessung RRHB 83 nach DWA-A 117

Vorfluter Püttlach

1. Bemessungsgrundlagen

Überschreitungshäufigkeit	n=	0,2 1/a
Wiederkehrzeit	$T_n =$	5 a
Aus PlaFe worh. Becken RRHB 83		
Regen zur Bemessung Volumen RRHB:	h _{N60} =	30 mm

2. Bestimmung der maßgebenden "undurchlässigen" Fläche und der Zuflussmengen

"Undurchlässige" Fläche: $A_u = 8,680$ ha (siehe gesonderte Aufstellung)

Bemessungszufluß für eine Regenspende $r_{15; n=1}$ Q = 1171,8 l/s

3. Ermittlung der Drosselabflußspenden

nach DWA-M153

Typ des Vorflutgewässers: kleiner Flachlandbach

Zulässiger Regenabflußspende: $q_r = 15 \text{ l/(s * ha)}$ "Undurchlässige" Fläche: $A_u = 8,680 \text{ ha}$ Zulässiger Drosselabfluß: $Q_{dr} = q_r * A_u \text{ l/s}$

Zulassiger Diosselabiluis. $Q_{dr} = q_r A_u / s$

max. Drosselabfluß aus PlaFe Ausbau A9 davon Reserve für Kläranlagenabfluß $Q_{dr} = 130,2 \text{ l/s}$ 84,5 l/s davon Reserve für Kläranlagenabfluß 0,5 l/s Gewählter Drosselabfluß: $Q_{dr,max/gewählt} = 84,00 \text{ l/s}$

Gewählter Drosselabfluß: Q_{dr max(gewählt)} = 84,00 l/s
Gewählter Drosselabfluß <= Zulässiger Drosselabfluß

4. Berechnung der erforderlichen Drosselnennweite im Auslaufbauwerk des RRHB

Aufstauhöhe:	h =	1,50 m	
Durchmesser Drossel:	DN =	175 mm	
h _{max} = Aufstau	höhe - Drosselrohr/2 =	1,41 m	
	$h_{min} = Drosselrohr/2 =$	0,09 m	
Einlaufverlustbeiwert:	9	0,64	
Drosselabfluß Maximum:	$Q_{max} =$	81,0 l/s	
Drosselabfluß Minimum:	$Q_{min} =$	20,2 l/s	
Drosselabfluß Mittelwert:	$Q_{Mittel} =$	50,60 l/s	
Gewählter Drosselabfluß:	Q _{dr(gewählt)} =	84,00 l/s	$= Q_{max}$
Entleehrungzeitraum mit Beginn des Re	gens t _{Entleer} =	9,9 h	
Regenanteil der Drosselabflußspende:	$q_{dr,r,u} =$	5,83 l/(s * ha)	

5. Ermittlung des Abminderungsfaktors fA

nach Anhang B, DWA-A 117

Flie ßzeit: $t_{i} = 15 \text{ min}$ Überschreitungshäufigkeit: n = 0,2 1/a Abminderungsfaktor: $f_{A} = 0,992$

6. Festlegung des Zuschlagsfaktors fz

nach Tabelle 2, DWA-A 117

Zuschlagsfaktor: f_Z= 1,15 Risikomaß: mittel

7. Bestimmung der statistischen Niederschlagshöhen und Regenspenden

Anwendung von Gleichung 2 (ATV-A 117) für ausgewählte Dauerstufen

Spezifisches Speichervolumen $V_{s,u}=(r_{D,n}-q_{dr,r,u})*D*f_Z*f_A*0,06$ [m³/ha]

Dauerstufe D	Niederschlagshöhe l für (n=0,2) /a	hN Zugehörige Regenspende r	Drosselabfluss- spende q _{dr,r,u}	Differenz zw. r und q _{dr,r,u}	spezifisches Speichervolumen V _{s,u}
[min]	[mm]	[l/(s*ha)]	[l/(s*ha)]	[l/(s*ha)]	[m³/ha]
10	14,2	236,7	5,8	230,8	158
20	20,1	167,5	5,8	161,7	221
30	23,7	131,7	5,8	125,8	258
45	27,5	101,9	5,8	96,0	296
60	30,3	84,2	5,8	78,3	322
90	32,4	60,0	5,8	54,2	334
120	34,0	47,2	5,8	41,4	340
180	36,4	33,7	5,8	27,9	343
240	38,4	26,7	5,8	20,8	342
360	41,3	19,1	5,8	13,3	327
540	44,5	13,7	5,8	7,9	292

8. Bestimmung des erforderlichen Rückhaltevolumens

m³ $V = V_{s,u} * A_u$ Erforderliches Rückhaltevolumen: 8,680 m² "Undurchlässige" Fläche: $A_u =$ 343 m³ Erforderliches spezifisches Volumen: $V_{s,u}=$ 2981 m³ Erforderliches Volumen: V= Angabe PlaFe vorh. Becken: V=A_u *10*h_{N60} V= 2604 m³ 3000 m³ Gewähltes Volumen: V=

Bemessung des Absetzbeckens ASB 83

nach RAS Ew 2005

Ziffer 1.4.7

1. Bestimmung der erforderlichen Wasseroberfläche

3,6 * Q / q_A erf. Wasseroberfläche: erf. A =

> 9 m/h Oberflächenbeschickung $q_A =$

 $Q = Bemessungszufluß für eine Regenspende <math>r_{15; n=1}$

Regenspende $r_{15 (n=1)} =$ 135 l/(s*ha)

1172 l/s

469 m² erf. A =

Angabe PlaFe vorh. Becken: qA = 18m/h; erf. A = 234 m²

> gewählte A_W = 490 m²

2. Berechnung des erforderlichen Ölauffangraumes

30 m³ erf. Ölauffangraum: $V_{erf} =$

1155 m² vorh. Wasseroberfläche A_{Wasseroberfläche} =

mit Berücksichtigung der Böschung:

vorh. Höhe Ölauffangraum: t = V_{erf}/A_{Wasserobertläche}

0,03 m

erf. Ölauffangraum vorhanden

3. Nachweis auf Einhaltung der Klärbedingungen im Absetzbecken

8,680 ha reduzierte Fläche: $A_{red} =$ 490 m² vorh. Wasseroberfläche: $A_W =$ 30,0 m² vorh. durchströmter Querschnitt: AQ ~ kritische Regenspende: 135 l(s*ha) $r_{krit} =$ zul. Oberflächenbeschickung: 9,0 m/h $q_{A Zul.}=$ zul. horizontale Fließgeschwindigkeit: 0,05 m/s $V_{h Zul.} =$

 A_{red} * r_{krit} $Q_{rkrit} =$ kritischer Regenabfluß:

 $Q_{rkrit} =$ 1172 l/s

 $q_{A Vorh.} = 3.6 * Q_{krit} / A_W$ vorh. Oberflächenbeschickung:

> 8,6 m/h $q_{A Vorh.} =$

Ergebnis: zul. Oberflächenbeschickung unterschritten

vorh. horizontale Fließgeschwindigkeit: $V_{h \text{ Vorh.}} = Q_{krit} / 1000 / A_Q$

> 0,04 m/s $V_{h \text{ Vorh.}} =$

zul. Fließgeschwindigkeit unterschritten Ergebnis:

4.2 RRHB 84

4.2.1 Ermittlung der Wassermengen und A_{red}

Vorfluter Püttlach

Grundlagen

nach RAS-Ew Ausgabe 2005 / ATV M 153

Abflußbeiwerte:

nach ATV M 153 Tabelle 2

Art der Fläche	Abflußbeiwert		
Fahrbahnen	ψ= 0,9		
Pflaster mit dichten Fugen	ψ= 0,75		
Bankette in Schotterbefestigung	ψ= 0,9		

Spezifische Versickerraten:

Böschungen	$q_s =$	100 l/s*ha
Grünflächen mit Abfluss in das RRB	$q_s =$	100 l/s*ha

Regenspenden:

Demanda of interit (ava Dia Fa Avada o AO)	and an air	(2) L L L	40E 1/-+1
Regenhäufigkeit (aus PlaFe Ausbau A9)	n = 1	$r_{15(n=1)} =$	135 l/s*ha

Ermittlung der Wassermengen nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2

lfd. Nr.	Art	Fläche	Abflußbei- wert	reduzierte Fläche	spezifische Versickerrate	Wasser- menge
		А	Ψ	Α	q _s	Q
		[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn inklusive Brückenfläche	0,090	0,9	0,081	0	10,9
2	Brückenkappen	0,008	0,9	0,007	0	1,0
3	standfeste Bankette an Fahrbahnen	0,025	0,9	0,023	0	3,0
4	Dammböschungen	0,274	1	0,274	-100	9,6
5	aus Bestand BAB A9 (It. PlaFe)					415,0
						0,0
						0,0
						0,0
						0,0
						0,0
						0,0
						0,0
					Summe:	439.5

Berechnung von A_{red}

nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.3

$$A_{red} = Q[l/s] 439,50$$
 $r[l/(s*ha)] 135.00$

 $A_{red} = 3,256$ ha

4.2.2 Qualitative Gewässerbelastung nach M153

Qualitative Gewässerbelastung

Auf Grundlage des Bewertungsverfahrens nach dem Merkblatt DWA-M 153 wird die vorgesehene Behandlungsmaßnahme überprüft.

Höhnen & Partner, Ingen								
		Qualitative G	ewässerb	elastung				
Projekt: Neubau PWC	- Anlage 319-11	_ und 319-1R					Datum	: 06.05.2014
Gewässer (Anhang A, Ta	abelle A.1a und	A.1b)				Тур	Gewäss	serpunkte G
RRHB 84, Vorfluter Püttl	ach					G 6	G =	15
Flächenanteile f _i (Kap. 4)		Luft L _i (1	Гаь. А.2)	Flächen	F _i (Tab. A.3)	Abflu	ussbelastung B _i
Flächen	A _{II} in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	В	$f_i = f_i \cdot (L_i + F_i)$
Fahrbahn inkl. Brücke	0,088	0,028	L 3	4	F 6	35		1,08
Bankette	0,022	0,007	L 3	4	F 6	35		0,27
Grünflächen, Böschung	0,071		L 3	4	F 1	5		
aus Bestand BAB A9	3,074	0,965	L 3	4	F 6	35		37,65
			L		F			
			L		F			
	Σ = 3,256	$\Sigma =$ 1		L Abfluss	⊥ belastung B	= Summe (B _i)	B =	39
maximal zulässiger Durch	ngangswert D _m	_{ax} = G/B		100 00000000 5 4000000		and the second s	D _{max} =	0,38
vorgesehene Behandlur	ıgsmaßnahmen	(Tabellen: A.4a, A.	.4b und A.4	4c)		Тур	200	gangswerte D;
Absetzbecken mit Dauer	rstau und max 9	lm/h Oberflächenbe	eschicku	300		D 21d		0,2
						D		
						D		
		Durcha	anaswert [) = Produkt	aller D: (siel	ne Kap 6.2.21:	D=	0,2
Durchgangswert D = Produkt aller D; (siehe Kap 6.2.2) : Emissionswert E= B · D :						E=	7.8	
Die vorgesehene Regen		uma saialat aus - J- 1	F = 70 × C	:_1E	or Machinestration (1949)		65.26	545.70

4.2.3 Bemessung ASB und RRHB

Bemessung RRHB 84 nach DWA-A 117

Vorfluter Püttlach

1. Bemessungsgrundlagen

Überschreitungshäufigkeit	n=	0,2 1/a
Wiederkehrzeit	$T_n =$	5 a
A DI E I D I DDIID 04		

Aus PlaFe vorh. Becken RRHB 84

Regen zur Bemessung Volumen RRHB: h_{N60} = 30 mm

2. Bestimmung der maßgebenden "undurchlässigen" Fläche und der Zuflussmengen

"Undurchlässige" Fläche: $A_u = 3,256 \text{ ha (siehe gesonderte Aufstellung)}$

Bemessungszufluß für eine Regenspende $r_{15; n=1}$ Q = 439,5 l/s

3. Ermittlung der Drosselabflußspenden

nach DWA-M153

Typ des Vorflutgewässers: kleiner Flachlandbach

Zulässiger Regenabflußspende: $q_r = \frac{15 \text{ l/(s * ha)}}{\text{Undurchlässige" Fläche:}}$ $A_u = \frac{3,256 \text{ ha}}{\text{Supplement of the problem}}$

Zulässiger Drosselabfluß: $Q_{dr} = q_r * A_u I/s$

 $Q_{dr} = 48,8 \text{ I/s}$

Gewählter Drosselabfluß: $Q_{dr max(gewählt)} = 45,50 l/s$

Gewählter Drosselabfluß <= Zulässiger Drosselabfluß

4. Berechnung der erforderlichen Drosselnennweite im Auslaufbauwerk des RRHB

Aufstauhöhe: h = 0,90 mDurchmesser Drossel: DN = 150 mm

 $h_{max} = Aufstauh\"{o}he - Drosselrohr/2 = 0,83 m$

 $h_{min} = Drosselrohr/2 = 0,08 m$

Gewählter Drosselabfluß: $Q_{dr(gewählt)} = 45,50 \text{ l/s} = Q_{max}$

Entleehrungzeitraum mit Beginn des Regens $\mathbf{t}_{Entleer} = \mathbf{6,5} \text{ h}$ Regenanteil der Drosselabflußspende: $\mathbf{q}_{dr,r,u} = \mathbf{9,10} \text{ l/(s * ha)}$

5. Ermittlung des Abminderungsfaktors fA

nach Anhang B, DWA-A 117

Flie ßzeit: $t_{\rm l}=$ 15 min Überschreitungshäufigkeit: n= 0,2 1/a Abminderungsfaktor: $f_{\rm A}=$ 0,986

6. Festlegung des Zuschlagsfaktors fz

nach Tabelle 2, DWA-A 117

Zuschlagsfaktor: f_z= 1,20 Risikomaß: gering

7. Bestimmung der statistischen Niederschlagshöhen und Regenspenden

Anwendung von Gleichung 2 (ATV-A 117) für ausgewählte Dauerstufen

Spezifisches Speichervolumen $V_{s,u}=(r_{D,n}-q_{dr,r,u})*D*f_Z*f_A*0,06$ [m³/ha]

Dauerstufe D	Niederschlagshöhe hN für (n=0,2) /a	Zugehörige Regenspende r	Drosselabfluss- spende q _{dr,r,u}	Differenz zw. r und q _{dr,r,u}	spezifisches Speichervolumen V _{s,u}
[min]	[mm]	[l/(s*ha)]	[l/(s*ha)]	[l/(s*ha)]	[m³/ha]
10	14,2	236,7	9,1	227,6	162
20	20,1	167,5	9,1	158,4	225
30	23,7	131,7	9,1	122,6	261
45	27,5	101,9	9,1	92,8	296
60	30,3	84,2	9,1	75,1	320
90	32,4	60,0	9,1	50,9	325
120	34,0	47,2	9,1	38,1	325
180	36,4	33,7	9,1	24,6	314
240	38,4	26,7	9,1	17,6	299
360	41,3	19,1	9,1	10,0	256
540	44,5	13,7	9,1	4,6	178

8. Bestimmung des erforderlichen Rückhaltevolumens

m³ $V = V_{s,u} * A_u$ Erforderliches Rückhaltevolumen: $A_u =$ 3,256 m² "Undurchlässige" Fläche: 325 m³ Erforderliches spezifisches Volumen: Erforderliches Volumen: 1059 m³ **V**= Angabe PlaFe vorh. Becken: V=A_u *10*h_{N60} 977 m³ V= 2100 m³ Gewähltes Volumen: V=

Bemessung des Absetzbeckens ASB 84

nach RAS Ew 2005

Ziffer 1.4.7

1. Bestimmung der erforderlichen Wasseroberfläche

erf. Wasseroberfläche: erf. $A = 3.6 * Q / q_A$

q_A = 9 m/h Oberflächenbeschickung

 $Q = Bemessungszufluß für eine Regenspende <math>r_{15; n=1}$

Regenspende $r_{15 (n=1)} = 135 l/(s*ha)$

Q = 440 l/s

erf. $A = 176 \text{ m}^2$

Angabe PlaFe vorh. Becken: qA = 18m/h; erf. $A = 88 \text{ m}^2$

gewählte $A_W = \frac{180 \text{ m}^2}{100 \text{ m}^2}$

2. Berechnung des erforderlichen Ölauffangraumes

erf. Ölauffangraum: $V_{erf} = 30 \text{ m}^3$

vorh. Wasseroberfläche A_{Wasseroberfläche} = 650 m²

mit Berücksichtigung der Böschung:

vorh. Höhe Ölauffangraum: $t = V_{\text{erf}}/A_{\text{Wasseroberfläche}}$

t = 0,05 m

erf. Ölauffangraum vorhanden

3. Nachweis auf Einhaltung der Klärbedingungen im Absetzbecken

reduzierte Fläche: 3,256 ha vorh. Wasseroberfläche: $A_W =$ 180 m² 20,0 m² vorh. durchströmter Querschnitt: A_Q ~ kritische Regenspende: 135 l(s*ha) $r_{krit} =$ zul. Oberflächenbeschickung: 9,0 m/h $q_{A Zul.}=$ zul. horizontale Fließgeschwindigkeit: $V_{h Zul.} =$ 0,05 m/s

kritischer Regenabfluß: $Q_{rkrit} = \qquad \qquad A_{red} \ ^* \ r_{krit}$

 $Q_{rkrit} = 440 l/s$

vorh. Oberflächenbeschickung: $q_{A \text{ Vorh.}} = 3.6 * Q_{krit} / A_W$

 $q_{A \text{ Vorh.}} = 8.8 \text{ m/h}$

Ergebnis: zul. Oberflächenbeschickung unterschritten

vorh. horizontale Fließgeschwindigkeit: $V_{h \text{ Vorh.}} = Q_{krit} / 1000 / A_{Q}$

 $V_{h \text{ Vorh.}} = 0.02 \text{ m/s}$

Ergebnis: zul. Fließgeschwindigkeit unterschritten